
IJDCST @June-July-2015, Issue- V-3, I-5, SW-04
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

14 www.ijdcst.com

 Granting Distinct Access Levels to Encrypted Cloud

Databases

P.Anusha 1, Dr.Syed Sadat Ali 2

1 M.Tech (CSE), NIMRA WOMEN’S COLLEGE OF ENGINEERING, A.P., India.

2Associate Professor, Dept. of Computer Science & Engineering, Nimra College of Engineering and Technology(NCET), A.P.,

India.

Abstract — Ensuring security and seamless

availability for data at rest, in motion, and in use, for

Outsourcing sensitive and crucial data in the hands of

a cloud provider is primary task. Several alternatives

exist for storage services, while data confidentiality

solutions for the database as a service paradigm are

still immature. We propose a novel architecture that

integrates cloud database services with data

confidentiality and the possibility of executing

concurrent operations on encrypted data. This is the

first solution supporting geographically distributed

clients to connect directly to an encrypted cloud

database, and to execute concurrent and independent

operations including those modifying the database

structure. The proposed architecture has the further

advantage of eliminating intermediate proxies that

limit the elasticity, availability, and scalability

properties that are intrinsic in cloud-based solutions.

The efficacy of the proposed architecture is evaluated

through theoretical analyses and extensive

experimental results based on a prototype

implementation subject to the TPC-C standard

benchmark for different numbers of clients and

network latencies.

Keywords — Cloud, security, confidentiality,

SecureDBaaS, database

I. INTRODUCTION

Ensuring data security and confidentiality is an utmost

important while placing critical information is placed

in infrastructures of untrusted third parties. [1]. This

requirement imposes clear data management choices:

original plain data must be accessible only by trusted

parties that do not include cloud providers,

intermediaries, and Internet; in any untrusted context,

data must be encrypted. Satisfying these goals has

different levels of complexity depending on the type

of cloud service. There are several solutions ensuring

confidentiality for the storage as a service paradigm,

while guaranteeing confidentiality in the database as a

service (DBaaS) paradigm is still an open research

area. In this context, we propose SecureDBaaS as the

first solution that allows cloud tenants to take full

advantage of DBaaS qualities, such as availability,

reliability, and elastic scalability, without exposing

unencrypted data to the cloud provider.

The architecture design was motivated by a threefold

goal: to allow multiple, independent, and

geographically distributed clients to execute

concurrent operations on encrypted data, including

SQL statements that modify the database structure; to

preserve data confidentiality and consistency at the

client and cloud level; to eliminate any intermediate

server between the cloud client and the cloud provider.

The possibility of combining availability, elasticity,

and scalability of a typical cloud DBaaS with data

confidentiality is demonstrated through a prototype of

SecureDBaaS that supports the execution of

concurrent and independent operations to the remote

encrypted database from many geographically

IJDCST @June-July-2015, Issue- V-3, I-5, SW-04
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

15 www.ijdcst.com

distributed clients as in any unencrypted DBaaS setup.

To achieve these goals, SecureDBaaS integrates

existing cryptographic schemes, isolation

mechanisms, and novel strategies for management of

encrypted metadata on the untrusted cloud database.

This paper contains a theoretical discussion about

solutions for data consistency issues due to concurrent

and independent client accesses to encrypted data. In

this context, we cannot apply fully homomorphic

encryption schemes [2] because of their excessive

computational complexity.

The SecureDBaaS architecture is tailored to cloud

platforms and does not introduce any intermediary

proxy or broker server between the client and the

cloud provider. Eliminating any trusted intermediate

server allows SecureDBaaS to achieve the same

availability, reliability, and elasticity levels of a cloud

DBaaS. Other proposals (e.g., [3], [4]) based on

intermediate server(s) were considered impracticable

for a cloud-based solution because any proxy

represents a single point of failure and a system

bottleneck that limits the main benefits (e.g.,

scalability, availability, and elasticity) of a database

service deployed on a cloud platform. Unlike

SecureDBaaS, architectures relying on a trusted

intermediate proxy do not support the most typical

cloud scenario where geographically dispersed clients

can concurrently issue read/write operations and data

structure modifications to a cloud database.

A large set of experiments based on real cloud

platforms demonstrate that SecureDBaaS is

immediately applicable to any DBMS because it

requires no modification to the cloud database

services. Other studies where the proposed

architecture is subject to the TPC-C standard

benchmark for different numbers of clients and

network latencies show that the performance of

concurrent read and write operations not modifying

the SecureDBaaS database structure is comparable to

that of unencrypted cloud database. Workloads

including modifications to the database structure are

also supported by SecureDBaaS, but at the price of

overheads that seem acceptable to achieve the desired

level of data confidentiality. The motivation of these

results is that network latencies, which are typical of

cloud scenarios, tend to mask the performance costs of

data encryption on response time. The overall

conclusions of this paper are important because for the

first time they demonstrate the applicability of

encryption to cloud database services in terms of

feasibility and performance.

Figure 1: SecureDBaas

II. ARCHITECTURE DESIGN

SecureDBaaS is designed to allow multiple and

independent

clients to connect directly to the untrusted cloud

DBaaS without any intermediate server. Fig. 1

describes the overall architecture. We assume that a

tenant organization acquires a cloud database service

from an untrusted DBaaS provider. The tenant then

deploys one or more machines (Client 1 through N)

and installs a SecureDBaaS client on each of them.

IJDCST @June-July-2015, Issue- V-3, I-5, SW-04
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

16 www.ijdcst.com

This client allows a user to connect to the cloud

DBaaS to administer it, to read and write data, and

even to create and modify the database tables after

creation.

We assume the same security model that is commonly

adopted by the literature in this field, where tenant

users are trusted, the network is untrusted, and the

cloud provider is honest-but-curious, that is, cloud

service operations are executed correctly, but tenant

information confidentiality is at risk. For these

reasons, tenant data, data structures, and metadata

must be encrypted before exiting from the client. A

thorough presentation of the security model adopted in

this paper is in Appendix A, available in the online

supplemental material.

The information managed by SecureDBaaS includes

plaintext data, encrypted data, metadata, and

encrypted metadata. Plaintext data consist of

information that a tenant wants to store and process

remotely in the cloud DBaaS. To prevent an untrusted

cloud provider from violating confidentiality of tenant

data stored in plain form, SecureDBaaS adopts

multiple cryptographic techniques to transform

plaintext data into encrypted tenant data and encrypted

tenant data structures because even the names of the

tables and of their columns must be encrypted.

SecureDBaaS clients produce also a set of metadata

consisting of information required to encrypt and

decrypt data as well as other administration

information. Even metadata are encrypted and stored

in the cloud DBaaS.

SecureDBaaS moves away from existing architectures

that store just tenant data in the cloud database, and

save metadata in the client machine or split metadata

between the cloud database and a trusted proxy [5].

When considering scenarios where multiple clients

can access the same database concurrently, these

previous solutions are quite inefficient. For example,

saving metadata on the clients would require onerous

mechanisms for metadata synchronization, and the

practical impossibility of allowing multiple clients to

access cloud database services independently.

Solutions based on a trusted proxy are more feasible,

but they introduce a system bottleneck that reduces

availability, elasticity, and scalability of cloud

database services.

SecureDBaaS proposes a different approach where all

data and metadata are stored in the cloud database.

SecureDBaaS clients can retrieve the necessary

metadata from the untrusted database through SQL

statements, so that multiple instances of the

SecureDBaaS client can access to the untrusted cloud

database independently with the guarantee of the same

availability and scalability properties of typical cloud

DBaaS. Encryption strategies for tenant data and

innovative solutions for metadata management and

storage are described in the following two sections.

Data Management

We assume that tenant data are saved in a relational

database. We have to preserve the confidentiality of

the stored data and even of the database structure

because table and column names may yield

information about saved data. We distinguish the

strategies for encrypting the database structures and

the tenant data.

Encrypted tenant data are stored through secure tables

into the cloud database. To allow transparent

execution of SQL statements, each plaintext table is

transformed into a secure table because the cloud

database is untrusted. The name of a secure table is

generated by encrypting the name of the

IJDCST @June-July-2015, Issue- V-3, I-5, SW-04
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

17 www.ijdcst.com

corresponding plaintext table. Table names are

encrypted by means of the same encryption algorithm

and an encryption key that is known to all the

SecureDBaaS clients. Hence, the encrypted name can

be computed from the plaintext name. On the other

hand, column names of secure tables are randomly

generated by SecureDBaaS; hence, even if different

plaintext tables have columns with the same name, the

names of the columns of the corresponding secure

tables is different. This design choice improves

confidentiality by preventing an adversarial cloud

database from guessing relations among different

secure tables through the identification of columns

having the same encrypted name.

SecureDBaaS allows tenants to leverage the

computational power of untrusted cloud databases by

making it possible to execute SQL statements

remotely and over encrypted tenant data, although

remote processing of encrypted data is possible to the

extent allowed by the encryption policy. To this

purpose, SecureDBaaS extends the concept of data

type, that is associated with each column of a

traditional database by introducing the secure type. By

choosing a secure type for each column of a secure

table, a tenant can define fine-grained encryption

policies, thus reaching the desired trade-off between

data confidentiality and remote processing ability. A

secure type is composed of three fields: data type,

encryption type, and field confidentiality. The

combination of the encryption type and of the field

confidentiality parameters defines the encryption

policy of the associated column.

The data type represents the type of the plaintext data

(e.g., int, varchar). The encryption type identifies the

encryption algorithm that is used to cipher all the data

of a column. It is chosen among the algorithms

supported by the SecureDBaaS implementation. As in

[9], SecureDBaaS leverages several SQL-aware

encryption algorithms that allow the execution of

statements over encrypted data. It is important to

observe that each algorithm supports only a subset of

SQL operators. These features are discussed in

Appendix C, available in the online supplemental

material. When SecureDBaaS creates an encrypted

table, the data type of each column of the encrypted

table is determined by the encryption algorithm used

to encode tenant data. Two encryption algorithms are

defined compatible if they produce encrypted data that

require the same column data type.

Metadata Management

Metadata generated by SecureDBaaS contain all the

information that is necessary to manage SQL

statements over the encrypted database in a way

transparent to the user. Metadata management

strategies represent an original idea because

SecureDBaaS is the first architecture storing all

metadata in the untrusted cloud database together with

the encrypted tenant data. SecureDBaaS uses two

types of metadata.

 Database metadata are related to the whole

database. There is only one instance of this

metadata type for each database.

 Table metadata are associated with one secure

table. Each table metadata contains all

information that is necessary to encrypt and

decrypt data of the associated secure table.

This design choice makes it possible to identify which

metadata type is required to execute any SQL

statement so that a SecureDBaaS client needs to fetch

only the metadata related to the secure table/s that

is/are involved in the SQL statement. Retrieval and

management of database metadata are necessary only

IJDCST @June-July-2015, Issue- V-3, I-5, SW-04
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

18 www.ijdcst.com

if the SQL statement involves columns having the

field confidentiality policy equal to database. This

design choice minimizes the amount of metadata that

each SecureDBaaS client has to fetch from the

untrusted cloud database, thus reducing bandwidth

consumption and processing time. Moreover, it allows

multiple clients to access independently metadata

related to different secure tables

Database metadata contain the encryption keys that

are used for the secure types having the field

confidentiality set to database. A different encryption

key is associated with all the possible combinations of

data type and encryption type. Hence, the database

metadata represent a keyring and do not contain any

information about tenant data.

Figure 2: Structure of table metadata

The structure of a table metadata is represented in Fig.

2. Table metadata contain the name of the related

secure table and the unencrypted name of the related

plaintext table. Moreover, table metadata include

column metadata for each column of the related secure

table. Each column metadata contain the following

information.

 Plain name: the name of the corresponding

column of the plaintext table.

 Coded name: the name of the column of the

secure table. This is the only information that

links a column to the corresponding plaintext

column because column names of secure tables

are randomly generated.

 Secure type: the secure type of the column, as

defined in Section 3.1. This allows a

SecureDBaaS client to be informed about the data

type and the encryption policies associated with a

column.

 Encryption key: the key used to encrypt and

decrypt all the data stored in the column.

SecureDBaaS stores metadata in the metadata storage

table that is located in the untrusted cloud as the

database. This is an original choice that augments

flexibility, but opens two novel issues in terms of

efficient data retrieval and data confidentiality. To

allow SecureDBaaS clients to manipulate metadata

through SQL statements, we save database and table

metadata in a tabular form. Even metadata

confidentiality is guaranteed through encryption. The

structure of the metadata storage table is shown in Fig.

3. This table uses one row for the database metadata,

and one row for each table metadata.

IJDCST @June-July-2015, Issue- V-3, I-5, SW-04
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

19 www.ijdcst.com

Figure 3 Organisation of database metadata and table

metadata

III. RELATED WORK

SecureDBaaS provides several original features that

differentiate it from previous work in the field of

security for remote database services.

 It guarantees data confidentiality by allowing a

cloud database server to execute concurrent SQL

operations (not only read/write, but also

modifications to the database structure) over

encrypted data.

 It provides the same availability, elasticity, and

scalability of the original cloud DBaaS because it

does not require any intermediate server.

Response times are affected by cryptographic

overheads that for most SQL operations are

masked by network latencies.

 Multiple clients, possibly geographically

distributed, can access concurrently and

independently a cloud database service.

 It does not require a trusted broker or a trusted

proxy because tenant data and metadata stored by

the cloud database are always encrypted.

 It is compatible with the most popular relational

database servers, and it is applicable to different

DBMS implementations because all adopted

solutions are database agnostic.

Cryptographic file systems and secure storage

solutions represent the earliest works in this field. We

do not detail the several papers and products (e.g.,

Sporc [6], Sundr [7], Depot [8]) because they do not

support computations on encrypted data.

IV. CONCLUSION

We propose an innovative architecture that guarantees

confidentiality of data stored in public cloud

databases. Unlike state-of-the-art approaches, our

solution does not rely on an intermediate proxy that

we consider a single point of failure and a bottleneck

limiting availability and scalability of typical cloud

database services. A large part of the research includes

solutions to support concurrent SQL operations

(including statements modifying the database

structure) on encrypted data issued by heterogenous

and possibly geographically dispersed clients. The

proposed architecture does not require modifications

to the cloud database, and it is immediately applicable

to existing cloud DBaaS, such as the experimented

PostgreSQL Plus Cloud Database, Windows Azure,

and Xeround. There are no theoretical and practical

limits to extend our solution to other platforms and to

include new encryption algorithms.

REFERENCES

[1] M. Armbrust et al., “A View of Cloud

Computing,” Comm. of the ACM, vol. 53, no. 4, pp.

50-58, 2010.

[2] W. Jansen and T. Grance, “Guidelines on Security

and Privacy in Public Cloud Computing,” Technical

Report Special Publication 800-144, NIST, 2011.

[3] A.J. Feldman, W.P. Zeller, M.J. Freedman, and

E.W. Felten, “SPORC: Group Collaboration Using

Untrusted Cloud Resources,” Proc. Ninth USENIX

Conf. Operating Systems Design and Implementation,

Oct. 2010.

[4] J. Li, M. Krohn, D. Mazie`res, and D. Shasha,

“Secure Untrusted Data Repository (SUNDR),” Proc.

IJDCST @June-July-2015, Issue- V-3, I-5, SW-04
ISSN-2320-7884 (Online)
ISSN-2321-0257 (Print)

20 www.ijdcst.com

Sixth USENIX Conf. Opearting Systems Design and

Implementation, Oct. 2004.

[5] P. Mahajan, S. Setty, S. Lee, A. Clement, L.

Alvisi, M. Dahlin, and M. Walfish, “Depot: Cloud

Storage with Minimal Trust,” ACM Trans. Computer

Systems, vol. 29, no. 4, article 12, 2011.

[6] H. Hacigu¨mu¨ s¸, B. Iyer, and S. Mehrotra,

“Providing Database as a

Service,” Proc. 18th IEEE Int’l Conf. Data Eng., Feb.

2002.

[7] C. Gentry, “Fully Homomorphic Encryption Using

Ideal Lattices,” Proc. 41st Ann. ACM Symp. Theory

of Computing, May 2009.

[8] H. Hacigu¨mu¨ s¸, B. Iyer, C. Li, and S. Mehrotra,

“Executing SQL over Encrypted Data in the Database-

Service-Provider Model,” Proc. ACM SIGMOD Int’l

Conf. Management Data, June 2002.

[9] R.A. Popa, C.M.S. Redfield, N. Zeldovich, and H.

Balakrishnan, “CryptDB: Protecting Confidentiality

with Encrypted Query Processing,” Proc. 23rd ACM

Symp. Operating Systems Principles, Oct. 2011.

